Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity
نویسندگان
چکیده
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.
منابع مشابه
Biodiversity loss decreases parasite diversity: theory and patterns
Past models have suggested host-parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of f...
متن کاملHost Centrality in Food Web Networks Determines Parasite Diversity
BACKGROUND Parasites significantly alter topological metrics describing food web structure, yet few studies have explored the relationship between food web topology and parasite diversity. METHODS/PRINCIPAL FINDINGS This study uses quantitative metrics describing network structure to investigate the relationship between the topology of the host food web and parasite diversity. Food webs were ...
متن کاملImportance of parasites and their life cycle characteristics in determining the structure of a large marine food web
1. Despite their documented effects on trophic interactions and community structure, parasites are rarely included in food web analyses. The transmission routes of most parasitic helminths follow closely the trophic relationships among their successive hosts and are thus embedded in food webs, in a way that may influence energy flow and the structure of the web. 2. We investigated the impact of...
متن کاملMetacommunity theory explains the emergence of food web complexity.
Food webs are highly complex ecological networks, dynamic in both space and time. Metacommunity models are now at the core of unified theories of biodiversity, but to date they have not addressed food web complexity. Here we show that metacommunity theory can explain the emergence of species-rich food webs with complex network topologies. Our analysis shows that network branching in the food we...
متن کاملCryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity.
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.)...
متن کامل